Уильям Пейли и его аргумент дизайна
Свернуть
X
-
- - - Добавлено - - -
Это ссылка на этот журнал: https://www.coldregions.org/vufind/Content/AJUSvVIn5
Статья страница 211-213. При нажатии ссылки автоматически скачивается весь журнал...
Surface distribution of microorganismsin antarctic dry-valley soils:a Martian analog
R. E. CAMERON, H. P. CONROW, D. R. GENSEL,G. H. LACY, and F. A. MORELLI
Bioscience SectionJet Propulsion LaboratoryCalifornia institute of Technology
Planners for future soft landings on Mars need toknow whether a single soil sample taken near thepoint of landing is likely to be adequate for analysisand life detection or whether several samples taken atvarious locations would be better. A Jet PropulsionLaboratory project in the barren dry valleys of Ant-arctica is helping to resolve that problem and othersrelated to Martian exploration.
Two antarctic dry valleys, McKelvey Valley andPearse Valley, were selected for systematic sampling ofthe surface 2 cm of soil to determine if a sterile soilcould be found in a specified area of the dry valleysand to determine the distribution, abundance, andkinds of microorganisms present within a given area.Samples were taken within a grid of 7,000 sq m (seefig.), chosen for its value in criminology (Hoffman etal., 1969), and were collected by aseptic techniques tominimize external contamination. The samples werekept below 30°C. at all times until they had been ana-lyzed for microorganisms and soil properties at the JetPropulsion Laboratory (Cameron and Conrow, 1968).
In the laboratory, an aliquot of each sample wasanalyzed for pH, Eh, EC, H20 content, color, andMunsell Notation. Detailed soil analyses were per-formed only for the center pits, numbered 772 inMcKelvey Valley and 777 in Pearse Valley. Both pitscontained brownish or grayish oxidized dolerite-de-rived sands with 0.001 to 0.006 weight percent organic (Kjeldahl) nitrogen and 0.01 to 0.09 weight percentorganic (Allison) carbon, less than 0.1 milliequiva-lent (me) per 100 g cation exchange capacity, andless than 0.5 me per 100 g buffer capacity. The Mc-Kelvey Valley pit contained more salts than the' PearseValley pit, indicating that it was less "leached"; theMcKelvey Valley pit had 400 parts per million Na+as the cation present in largest concentration, and 260ppm NO as the maximum anion. For all theMcKelvey Valley soils, the pH values ranged between7.2 and 8.0, Eh ranged between +200 and +280 my(uncompensated), electrical conductance was 88 to3,600 mhos per cm at 25°C., and H20 was 0.4 to 25(average 2.1) weight percent. For all the Pearse Val-ley soils, the pH values ranged between 7.4 and 8.3,Eh was +210 to +330 my (uncompensated), electri-cal conductance was 51 to 6,400 mhos/cm at 25°C.,and H20 was 0.16 to 0.56 (average 0.29) weight per-cent.
In general, Pearse Valley was of more recent agethan McKelvey Valley, as indicated by soil propertiesand other factors. The most significant environmentaland sampling factor for microorganisms in McKelveyValley was proximity to snow patches, which wouldaccount for a higher moisture content in some sam-ples. At the Pearse Valley site, biotic influx and fall-out could be expected from easterly winds sweepingacross algae-containing local ponds as well as fromLake Bonney and the hut in Taylor Valley.
Microbiological analyses were primarily for bacteriaas determined on triplicate spread plates of trypticasesoy agar incubated at 20°C. However, the plates alsowere checked for fungi (yeasts and molds), which fre-quently appear on these plates. Following serial dilu-tions and plating aliquots of the original 10 g of soilsuspended in 40 ml H20, 10 ml of Thornton's salt so-lution was added to the milk dilution bottles, and theywere placed in an environator at 20°C. and 25 to 150footcandles with a diel cycle of 16 hr illumination.These bottles were subsequently examined for growthof algae and Protozoa.
The results of bacterial abundance are shown intable 1 for the two grids. For McKelvey Valley, thenumbers of bacteria for 25 samples ranged from 70 to29,500 per g soil, with an average of 2,890 per g forall samples. For Pearse Valley, a similar range was ob-tained for 30 samples, with 190 to 13,000 (average2,790) per soil.
For finding culturable microorganisms in antarcticsoils, one sample may be almost as good as another on a random basisbut not on a selective basis, whichconsiders physiographic characteristics and the mi-croenvironment. However, in consideration of the rel-atively low abundance of microorganisms and the in-homogeneities of antarctic soils, and especially forautomated life detectors that may sample small ali-quots (less than 1 g soil), the chances of a successfulexperiment are enhanced by collecting samples con-taining more than 10,000 microorganisms per g soil,rather than one with fewer than 100 per g soil.
The kinds of microorganisms cultured from oursamples are shown in table 2. Supporting previouslydetermined ecological theory for the dry valleys, thekinds of microorganisms, their complexity, and theirabundances increase as environmental characteristics,especially the hydrothermal regime, become more fa-vorable (Cameron, 1971). No Streptoinyces spp orfungi were cultured, although the streptomycetesmay occur abundantly as a single population in moistare is (Benoit and Hall, 1970). If the molds are in-dee1 absent, then the Protozoa must be living off the algae.
The species of microorganisms cultured from our samples also support previous work on antarctic soils in the prevalence of members of the diphtheroid (no-cardioid?) group of bacteria. Beige colonies, or white and ivory colonies that sometimes changed to beige with age, were the most abundant. They were also the first colonies to appear on the agar plates, in about 4 days;. Pinpoint coral colonies appeared last, usually within 10 to 14 days of a 6-week incubation period. Corynebacterium bovis was the most abundant and fastest growing microorganism cultured from our soils; it usually grew best at +25°C. and also in liquid Burk's N-free medium but not in trypticase soy broth(TSB) with 5-percent added salt (Prof. Roy M. John-son, personal communication). (Five-percent salt isalready in the bottled commercial TSB.) In compari-son with the bacteria, algae required at least 25 daysto more than 6 months before macroscopic growthwas evident. The algae were generally blue-greens, andpredominately of the filamentous oscillatorioid formSchizothrix calcicola, which is prevalent as an eco-phene throughout the world (Drouet, 1968). Only S.calcicola was present in McKelvey Valley, which isconsistent with the versatility of this species and itsadaptation to drier desert environments. The samplescontaining algae did not show any obvious correlationwith the abundance of bacteria, but the slow recoveryof algae in culture may indicate many years of inactiv-ity. Protozoa also apparently have great survival pow-ers. Valkampfia umax, a small amoeboid protozoan,was most frequently observed in the algal cultures,and it has been observed in many other desert soilscontaining algae. Possibly, it too could remain viablefor many decades as cysts in the dry valley soils.
Whether or not there is any life in a Martian soilremains to be seen. The antarctic dry valleys are lushby comparison with known Martian environmentalconditions. Although no sterile samples were found inthe present study, our own previous studies and thoseof others (Horowitz and Cameron, 1971) have shownthat some antarctic soil samples contain no viable orculturable microorganisms. In consideration of thesefactors, the possibility of Martian life forms in randomsamples is small, and it is important that persons whomust devise methods of extraterrestrial sampling, lifedetection, and quarantine give consideration to theAntarctic as a Martian analog.
(This paper presents the results of one phase of researchcarried out under National Aeronautics and Space Admin-istration contract NAS 7-100. Logistic support and facilitiesfor the investigations in Antarctica and additional laboratorysupport at the Jet Propulsion Laboratory were providedunder National Science Foundation contract NSF-0585.R. B. Hanson provided assistance in sample collection. Bac-terial identification and physiology were given by R. M.Johnson, Arizona State University.)Пр.21:5 Помышления прилежного стремятся к изобилию, а всякий торопливый терпит лишение.Комментарий
-
Можете своё бла-бла другим показывать, но от вас ничего конкретного нет и не было никогда... Только хлеб ваш отнять, будете сами себе говорить...
- - - Добавлено - - -
Это ссылка на этот журнал: https://www.coldregions.org/vufind/Content/AJUSvVIn5
Статья страница 211-213 при нажатии автоматически скачивается...
То есть, поднавравши слегка тов. крецы?
Surface distribution of microorganismsin antarctic dry-valley soils:a Martian analog
R. E. CAMERON, H. P. CONROW, D. R. GENSEL,G. H. LACY, and F. A. MORELLI
Bioscience SectionJet Propulsion LaboratoryCalifornia institute of Technology
Planners for future soft landings on Mars need toknow whether a single soil sample taken near thepoint of landing is likely to be adequate for analysisand life detection or whether several samples taken atvarious locations would be better. A Jet PropulsionLaboratory project in the barren dry valleys of Ant-arctica is helping to resolve that problem and othersrelated to Martian exploration.
Two antarctic dry valleys, McKelvey Valley andPearse Valley, were selected for systematic sampling ofthe surface 2 cm of soil to determine if a sterile soilcould be found in a specified area of the dry valleysand to determine the distribution, abundance, andkinds of microorganisms present within a given area.Samples were taken within a grid of 7,000 sq m (seefig.), chosen for its value in criminology (Hoffman etal., 1969), and were collected by aseptic techniques tominimize external contamination. The samples werekept below 30°C. at all times until they had been ana-lyzed for microorganisms and soil properties at the JetPropulsion Laboratory (Cameron and Conrow, 1968).
In the laboratory, an aliquot of each sample wasanalyzed for pH, Eh, EC, H20 content, color, andMunsell Notation. Detailed soil analyses were per-formed only for the center pits, numbered 772 inMcKelvey Valley and 777 in Pearse Valley. Both pitscontained brownish or grayish oxidized dolerite-de-rived sands with 0.001 to 0.006 weight percent organic (Kjeldahl) nitrogen and 0.01 to 0.09 weight percentorganic (Allison) carbon, less than 0.1 milliequiva-lent (me) per 100 g cation exchange capacity, andless than 0.5 me per 100 g buffer capacity. The Mc-Kelvey Valley pit contained more salts than the' PearseValley pit, indicating that it was less "leached"; theMcKelvey Valley pit had 400 parts per million Na+as the cation present in largest concentration, and 260ppm NO as the maximum anion. For all theMcKelvey Valley soils, the pH values ranged between7.2 and 8.0, Eh ranged between +200 and +280 my(uncompensated), electrical conductance was 88 to3,600 mhos per cm at 25°C., and H20 was 0.4 to 25(average 2.1) weight percent. For all the Pearse Val-ley soils, the pH values ranged between 7.4 and 8.3,Eh was +210 to +330 my (uncompensated), electri-cal conductance was 51 to 6,400 mhos/cm at 25°C.,and H20 was 0.16 to 0.56 (average 0.29) weight per-cent.
In general, Pearse Valley was of more recent agethan McKelvey Valley, as indicated by soil propertiesand other factors. The most significant environmentaland sampling factor for microorganisms in McKelveyValley was proximity to snow patches, which wouldaccount for a higher moisture content in some sam-ples. At the Pearse Valley site, biotic influx and fall-out could be expected from easterly winds sweepingacross algae-containing local ponds as well as fromLake Bonney and the hut in Taylor Valley.
Microbiological analyses were primarily for bacteriaas determined on triplicate spread plates of trypticasesoy agar incubated at 20°C. However, the plates alsowere checked for fungi (yeasts and molds), which fre-quently appear on these plates. Following serial dilu-tions and plating aliquots of the original 10 g of soilsuspended in 40 ml H20, 10 ml of Thornton's salt so-lution was added to the milk dilution bottles, and theywere placed in an environator at 20°C. and 25 to 150footcandles with a diel cycle of 16 hr illumination.These bottles were subsequently examined for growthof algae and Protozoa.
The results of bacterial abundance are shown intable 1 for the two grids. For McKelvey Valley, thenumbers of bacteria for 25 samples ranged from 70 to29,500 per g soil, with an average of 2,890 per g forall samples. For Pearse Valley, a similar range was ob-tained for 30 samples, with 190 to 13,000 (average2,790) per soil.
For finding culturable microorganisms in antarcticsoils, one sample may be almost as good as another on a random basisbut not on a selective basis, whichconsiders physiographic characteristics and the mi-croenvironment. However, in consideration of the rel-atively low abundance of microorganisms and the in-homogeneities of antarctic soils, and especially forautomated life detectors that may sample small ali-quots (less than 1 g soil), the chances of a successfulexperiment are enhanced by collecting samples con-taining more than 10,000 microorganisms per g soil,rather than one with fewer than 100 per g soil.
The kinds of microorganisms cultured from oursamples are shown in table 2. Supporting previouslydetermined ecological theory for the dry valleys, thekinds of microorganisms, their complexity, and theirabundances increase as environmental characteristics,especially the hydrothermal regime, become more fa-vorable (Cameron, 1971). No Streptoinyces spp orfungi were cultured, although the streptomycetesmay occur abundantly as a single population in moistare is (Benoit and Hall, 1970). If the molds are in-dee1 absent, then the Protozoa must be living off the algae.
The species of microorganisms cultured from our samples also support previous work on antarctic soils in the prevalence of members of the diphtheroid (no-cardioid?) group of bacteria. Beige colonies, or white and ivory colonies that sometimes changed to beige with age, were the most abundant. They were also the first colonies to appear on the agar plates, in about 4 days;. Pinpoint coral colonies appeared last, usually within 10 to 14 days of a 6-week incubation period. Corynebacterium bovis was the most abundant and fastest growing microorganism cultured from our soils; it usually grew best at +25°C. and also in liquid Burk's N-free medium but not in trypticase soy broth(TSB) with 5-percent added salt (Prof. Roy M. John-son, personal communication). (Five-percent salt isalready in the bottled commercial TSB.) In compari-son with the bacteria, algae required at least 25 daysto more than 6 months before macroscopic growthwas evident. The algae were generally blue-greens, andpredominately of the filamentous oscillatorioid formSchizothrix calcicola, which is prevalent as an eco-phene throughout the world (Drouet, 1968). Only S.calcicola was present in McKelvey Valley, which isconsistent with the versatility of this species and itsadaptation to drier desert environments. The samplescontaining algae did not show any obvious correlationwith the abundance of bacteria, but the slow recoveryof algae in culture may indicate many years of inactiv-ity. Protozoa also apparently have great survival pow-ers. Valkampfia umax, a small amoeboid protozoan,was most frequently observed in the algal cultures,and it has been observed in many other desert soilscontaining algae. Possibly, it too could remain viablefor many decades as cysts in the dry valley soils.
Whether or not there is any life in a Martian soilremains to be seen. The antarctic dry valleys are lushby comparison with known Martian environmentalconditions. Although no sterile samples were found inthe present study, our own previous studies and thoseof others (Horowitz and Cameron, 1971) have shownthat some antarctic soil samples contain no viable orculturable microorganisms. In consideration of thesefactors, the possibility of Martian life forms in randomsamples is small, and it is important that persons whomust devise methods of extraterrestrial sampling, lifedetection, and quarantine give consideration to theAntarctic as a Martian analog.
(This paper presents the results of one phase of researchcarried out under National Aeronautics and Space Admin-istration contract NAS 7-100. Logistic support and facilitiesfor the investigations in Antarctica and additional laboratorysupport at the Jet Propulsion Laboratory were providedunder National Science Foundation contract NSF-0585.R. B. Hanson provided assistance in sample collection. Bac-terial identification and physiology were given by R. M.Johnson, Arizona State University.)[Или так, не понимая сунул?
Комментарий
-
Таблица из статьи:
- - - Добавлено - - -
Отдыхайте. Вы со своим неадекватизмом в игноре...Пр.21:5 Помышления прилежного стремятся к изобилию, а всякий торопливый терпит лишение.Комментарий
-
Данные из статьи которая обосновывает необходимость калибровок , выдавать за системную ошибку метода, то уже откровенное вранье. Поймали реховота на откровенном вранье, он и спрятался.
Сиди в норке и не высовывайсяКомментарий
-
Любая модель делается для отработки/проверки/исследования какого-то узкого множества ситуаций.
А вот вы в курсе вообще КАКИЕ бывают модели и для чего они используются???
."Давайте учиться иметь свое мнение, давайте не будем повторять чужое."
Виктор СуворовКомментарий
-
Любой взрослый серьёзный человек очевидно понимает, для чего в принципе делаются макеты. Однако, вы можете пойти в научно-исследовательский институт имени Крылова и сообщить тамошнему руководству, что они все кретиныВам популярно объяснят и про смачиваемость, и про масштабы в макетировании, и про цели данных опытов.
После гибели организма в первую очередь происходит разрушение мягких тканей, затем заполнение пустот скелета минеральными соединениями. Иногда пустоты скелета подвергаются пиритизации, ожелезнению, в них могут возникать друзы и включения кальцита, аметиста, флюорита, галенита и т. д. При фоссилизации скелет подвергается перекристаллизации, приводящей к устойчивым минеральным модификациям. Например, арагонитовые раковины моллюсков преобразуются в кальцитовые. Известны случаи минерализации, когда первичный химический состав скелета изменяется (псевдоморфозы). Так, известковые раковины частично или полностью замещаются водным кремнеземом и наоборот. Иногда наблюдаются фосфатизация, пиритизация и ожелезнение минеральных и органических скелетов.
Растения при фоссилизации обычно подвергаются полному разрушению, оставляя т. н. отпечатки и ядра, однако их остатки обнаруживаются в ископаемом виде начиная с докембрия. Также растительные ткани могут замещаться минеральными соединениями, чаще всего кремнеземом, карбонатом и пиритом. Подобное полное или частичное замещение стволов растений при сохранении внутренней структуры называется петрификация.
Время для этого не упоминается...
Прежде всего необходимо, чтобы в атмосфере не было О2
Первобытная земля с первичной атмосферой предположительно содержала в себе:
H2 NH3 CO2 CH4 N2 H2O
Откуда они взялись? Учёные предполагают, что они получились из вулканических газов, которые состоят из:
CO2 SO2 CO HCl N2 H2O
Не совпадают..
Если бы атмосфера была такой, как сейчас (CO2 O2 N2 H2O инертные газы), то эволюция молекул была бы невозможна. О2 связывает всё... Он уничтожил бы всё развивающееся через процесс окисления...
Вам просмотреть часть лекции бывшего эволюциониста от 10:30 - 19:40
Я не видел от вас опровержение лекции профессора зоологии Вальтера Файта ни по одному пункту... Его ещё никто не опроверг на форуме. А ругаться, как Пустоветов без аргументов - чести человеку не даёт... А в игнор его отправил...
Вы хотите сказать, что Матцке исследовал бактерию без жгутика? И потом ни с того, ни с чего повился жгутик с работающим моторчиком? Вы серьёзно верите этому фейку?
Что за бред? Вы видео смотрели? Почему он должен быть равномерно распространён на Земле? Куда улетучится аргон, если он закупорен в породе?? Какой изотоп из изотопа??
Короче говоря, и здесь вы не можете сказать честно, что ничего из видео не поняли. Ну я заранее написала, что без надежды))
И не задавайте глупых вопросов, смотрел ли я это видео, выставленное вами... Мой ответ ясно говорит об этом... Если не хотите думать, то здесь не моя проблема...
Всё, дальше можно эту ахинею не читать. Видите ли, Эдуард, я не знаю, где вы скопипастили эту желтуху, но ранее уже встречала нечто подобное. Там умственно неполноценные люди пытались дискридитировать радиоуглеродный метод датирования. Так вот, если бы ваш творец хоть чуть-чуть вдохнул разума в этих дебилоидов, то они знали бы, что радиоуглеродный метод датирования не применяется в эволюционной биологии (и уж подавно им не датируют живых существ), а применяется в основном в археологии.
Это значит ясно показать процесс эволюции от предположим: амёбы до человека... Или на худой конец - от молекулы - до бактерии... Но это нереально...
- - - Добавлено - - -
Постарайтесь это объяснить Генриху. Он слишком неадекватен в поведении в теме...Пр.21:5 Помышления прилежного стремятся к изобилию, а всякий торопливый терпит лишение.Комментарий
-
Комментарий
-
Нет никаких богов..Комментарий
-
Комментарий
-
Любой способ датирования, который известен в настоящее време имеет одну и ту же проблему неизвестности начального количества распадающегося изотопа... Всё способы исключительно на распаде того или иного элемента..., ибо нет других нестабильных с большим изменением вещества в природе...Пр.21:5 Помышления прилежного стремятся к изобилию, а всякий торопливый терпит лишение.Комментарий
-
Всё способы исключительно на распаде того или иного элемента.Комментарий
-
- - - Добавлено - - -
Они им все меряют.От возраста вселенной до костей динозавров
Комментарий
-
А он там (в первичной атмосфере) точно был?
Первобытная земля с первичной атмосферой предположительно содержала в себе:
CO2 N2
Не совпадают..
Проводили ведь эксперименты в условиях, приближённых к условиям возможной первичной атмосферы и продемонстрировали возможность появления в ней РНК.Комментарий
-
Комментарий
Комментарий